[日本語 / English]

各種情報その他 > イベント情報 > Aviv Hoffmann氏講演会のお知らせ

イベント情報

Aviv Hoffmann氏講演会のお知らせ [2018年12月01日]

開催日:2018年12月10日(月)と13日(木)

会場:京都大学吉田キャンパス

 
ヘブライ大学よりAviv Hoffmannをお招きして、下記の要領で2件のCAPEレクチャーを開催いたします。事前登録の必要はありませんので、奮ってご参加ください。
 
————
日時:12月10日(月)17:00-18:30
場所: 京都大学文学部校舎1階会議室 (No.8 of this map)
スピーカー: Dr. Aviv Hoffmann  (The Hebrew University of Jerusalem)
タイトル: Facts As Truth-Makers
 
アブストラクト: I offer a theory according to which facts are mereological fusions of regions of what I call exemplification space, where each point is either a positive or a negative world-specific fact (such as the fact that Sophia is sad at w and the fact that it is not the case that Sophia is sad at w’, respectively). Then, I define propositional facts: facts which correspond to propositions. The definition refers to basic facts, which I define, and requires closure under Boolean operations of negation and conjunction on facts, which I also define. Thus characterized, facts are hyperintensional: necessarily equivalent facts need not be identical. Their hyperintensionality is grounded in a notion of aboutness which I define. Next, I offer a truth-maker theory that adds a new twist to the familiar view that facts make propositions true: I assign world-specific facts as world-specific truth-makers to propositions. This strategy avoids the pitfalls that beset the orthodox definition of truth-makers. Subsequently, I throw away the world-specific ladder: I define truth-makers that are not world-specific by fusing together world-specific truth-makers. My theory of facts is part of a doctrine I call metaphysical pointillism, which also includes a theory propositions. Taken together, the two theories have the consequence that truth-maker maximalism holds: every truth has a truth-maker.
 
————
日時:12月13日(木)16:30-18:00
場所: 京都大学吉田泉殿 (No.76 of this map)
スピーカー: Dr. Aviv Hoffmann  (The Hebrew University of Jerusalem)
タイトル: Biregional Propositions
 
アブストラクト: Consider two fundamental questions in the metaphysics of propositions. What in the nature of a proposition enables it to be true (or false)? What in the nature of a proposition enables it to be about a given thing (especially, what enables necessarily equivalent propositions to be about distinct things)? To answer these questions, I offer the biregional theory of propositions. According to this theory, propositions inhabit what I call exemplification space where each point is a world-specific fact. I propose that propositions are (some) ordered pairs of disjoint regions of exemplification space: the first component of a pair corresponds to the truth of the proposition, and the second component of the pair corresponds to the falsity of the proposition. I answer the questions above as follows. A proposition is true (false) at a possible world iff some fact in the truth (falsity) region of the proposition is specific to that world. A proposition is about a thing iff some fact in either the truth or the falsity region of the proposition is about the thing.

← 一覧に戻る

最終更新日 - (c)2006 科学基礎論学会
このサイトの内容を無断で引用・転載することを禁じます。 サイト/サーバに関するご連絡は 管理者 まで