量子論から一般相対論を導出する

清水 哲男（Tetsuo Shimizu）

量子論と一般相対論とは、物理学のみならず全自然学の基礎であるが、その統一は「無限論」に由来する「発散の困難」に直面し、20世紀初頭における登場以来今日まで完成していない。わが「ディラック対の概念(concept of Dirac pair)」は、①「量子論の公理: \[\partial_x, d_x = 1 \] 」それのみから構成論的に出発し、②基本ディラック対の「長さ」状態: \(P_x \), と、「速さ」状態: \(D_x \), との対称クロス積: \(\bar{\times} \), 「反対称クロス積: \(\times \)」、「単純乗積(巾乗積)」、および、「自己内部微分: \(D(P_x) \)」が定義できる。基本ディラック対は、これらの演算について「演算子代数システム(algebraic system of operator(s), 「作用素環(リング of operator)」)」を生成し、かつ、「演算: \(\bar{\times} \)」について、以下の「恒等式列(tautology)」が成立している。

\[
\begin{align*}
P_x &\triangleq \left(\frac{\partial_x}{d_x} \right), \quad ([\partial_x, d_x] = 1), \quad S_x \triangleq P_x \otimes P_x, \quad A_x \triangleq P_x \otimes A P_x = 1/2, \\
S_x \bar{\otimes} A P_x &\triangleq \left(\begin{bmatrix} \partial_x^2 / 2, d_x \\ \partial_x, d_x^2 / 2 \end{bmatrix} \right) \triangleq D(P_x)P_x^2 / 2 = \{ A_x, P_x \} = P_x.
\end{align*}
\]

基本ディラック対のアフィン変換で、「量子論の公理」を不変に保つものを「ゲージ変換(gauge transformation)」と呼ぶが、その表現は、「\(SL(2, \mathbb{C}) \)」: 行列式=1，の2行2列の復素行列」 「ローレンツ群の開被覆群」である。ここから、2種の基本ディラック対として、「長さ」状態: \(P_x \), と、「速さ」状態: \(D_x \), の存在が導出できる。また,
P_x と $^{\lambda}D_x$, との対称クロス積として「ハミルトニアン(Hamiltonian)」が定義でき、それは「周波数：$\omega=1$」の、「重力場内のガリレイの振子」＝「等価原理(慣性質量=重力質量)」を充たす運動体」の存在に対応している。

$$^{\lambda}D_x \triangleq \left(\frac{\lambda d_x}{-\partial_x / \lambda} \right), \left([\lambda d_x, -\partial_x / \lambda] = 1 \right), -S_x = ^{\lambda}D_x \otimes _{\lambda}^{\lambda}D_x, -S_x \otimes _{\lambda}^{\lambda}D_x = ^{\lambda}D_x,$$

$$^{\lambda}D_x \otimes _{\lambda}P_x \triangleq ^{\lambda}H_x = -\left(\partial_x^2 / 2 \right) / \lambda + \lambda \left(d_x^2 / 2 \right), (\leftrightarrow (th)\left((p_x^2 / 2) / m \right) + m q_x^2 / 2)$$

「ハミルトニアン：$^{\lambda}H_x$」は、「長さ」状態：P_x, と、「速さ」状態：$^{\lambda}D_x$, との間に、「往復運動」を引き起こしていることが、以下のように証明できる。

$$^{\lambda}H_x \otimes _{\lambda}P_x \triangleq \left[\left(\partial_x - \left(\partial_x^2 / 2 \right) / \lambda + \lambda \left(d_x^2 / 2 \right) \right) \right] = \left(\frac{\lambda d_x}{-\partial_x / \lambda} \right) = ^{\lambda}D_x,$$

$$^{\lambda}H_x \otimes _{\lambda}^{\lambda}D_x \triangleq \left[\left(\partial_x - \left(\partial_x^2 / 2 \right) / \lambda + \lambda \left(d_x^2 / 2 \right) \right) \right] = \left(\frac{\partial_x}{d_x} \right) = P_x,$$

$\Leftrightarrow P_x \leftarrow ^{\lambda}H \rightarrow ^{\lambda}D_x.$

「一般的基本ディラック対：$P_x (\theta)$」は、「長さ」状態：P_x, と、「速さ」状態：$^{\lambda}D_x$, との「量子論的・重ね合わせ」であり、$P_x (\theta) \triangleq P_x \cos \theta + ^{\lambda}D_x \sin \theta \left(\cos^2 \theta + \sin^2 \theta = 1 \right)$

と書くことができ、また、$P_x (\theta)$, と、P_x, との対称クロス積は、

$$G_x (\theta) \triangleq P_x (\theta) \otimes _{\lambda}P_x = S_x \cos \theta + ^{\lambda}H_x \sin \theta,$$

$$G_x (\theta) \otimes _{\lambda}P_x = P_x (\theta), G_x (\theta) \otimes _{\lambda}P_x (\theta) = P_x,$$

$\Leftrightarrow P_x \leftarrow G_x (\theta) \rightarrow P_x (\theta).$

であり、「ゲージ変換演算子：$G_x (\theta)$」は、P_x, と、$P_x (\theta)$, との間に、往復運動を作り出している。これに、$\theta = \pi \tau$, と置けば「ローレンツ変換」が得られる。2 組の「速さ」状態：$^{\lambda}D_x$, の対称クロス積は、$-S_x$, であるから、それは「長さ」状態：P_x, を「反」長さ状態：$-P_x$, に変換し、「長さ：0」状態の空白領域：$P_x - P_x = 0$, を出現させ、「速さ」状態：$^{\lambda}D_x$, を、「前へ」と「慣性運動」させる。最終的には、「速さ」状態：$^{\lambda}D_x$, は、「mass shell equation」を充たす「一般相対論的・慣性運動体」すなわち「光量子(photon)」を伴う「電(量)子」を生成していることが証明できた。